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Abstract. We introduce a computational framework that incorporates multiple scattering for large-scale three-
dimensional (3-D) particle localization using single-shot in-line holography. Traditional holographic techniques
rely on single-scattering models that become inaccurate under high particle densities and large refractive index
contrasts. Existing multiple scattering solvers become computationally prohibitive for large-scale problems,
which comprise millions of voxels within the scattering volume. Our approach overcomes the computational
bottleneck by slicewise computation of multiple scattering under an efficient recursive framework. In the
forward model, each recursion estimates the next higher-order multiple scattered field among the object
slices. In the inverse model, each order of scattering is recursively estimated by a nonlinear optimization
procedure. This nonlinear inverse model is further supplemented by a sparsity promoting procedure that is
particularly effective in localizing 3-D distributed particles. We show that our multiple-scattering model
leads to significant improvement in the quality of 3-D localization compared to traditional methods based
on single scattering approximation. Our experiments demonstrate robust inverse multiple scattering,
allowing reconstruction of 100 million voxels from a single 1-megapixel hologram with a sparsity prior. The
performance bound of our approach is quantified in simulation and validated experimentally. Our work
promises utilization of multiple scattering for versatile large-scale applications.
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1 Introduction
Three-dimensional (3-D) particle-localization using in-line
holography is fundamental to many applications, such as bio-
logical sample characterization,1,2 flow cytometry,3,4 fluid me-
chanics,5,6 and optical measurement.7–9 Reconstructing dense
samples, however, remains challenging.10 Standard backpropa-
gation method (BPM) can only handle low particle density.10

Compressive holography based on the first Born approximation
significantly improves upon BPM by imposing sparsity
constraints.11,12 However, it suffers from an underlying single
scattering assumption, which becomes invalid at high particle
densities where multiple scattering effects become significant.
In this work, we propose a framework that accounts for multiple
scattering in in-line digital holography and enables accurate 3-D

particle localization at high density in a computationally effi-
cient fashion.

Multiple scattering induces a nonlinear relation between the
permittivity contrast and the scattered field, making it difficult to
invert.13 Many algorithms have been proposed to solve the in-
verse multiple scattering problem and demonstrated improved
performance over single-scattering methods, such as iterative
Born series,14–18 contrast source inversion,19–22 modified gra-
dient,23,24 series expansion with accelerated gradient descent
on Lippmann–Schwinger equation (SEAGLE),25,26 and hybrid
methods.27–30 However, computational challenges restrict them
to be demonstrated only for small-scale problems. This is be-
cause modeling multiple scattering necessitates computing
the internal scattered field within the object volume. Further-
more, the effectiveness of existing multiple scattering methods
has been demonstrated only under multishot tomography. While
multiple measurements do alleviate the ill-posedness of the*Address all correspondence to Lei Tan, E-mail: leitian@bu.edu
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inverse problem, they also increase acquisition time and system
complexity. Therefore, it is of interest to investigate whether one
can exploit multiple scattering using only a single-shot measure-
ment. In this work, we demonstrate successful inverse multiple
scattering for large-scale problems and reconstruct 100 million
voxels from a single 1-megapixel in-line hologram. We show
that, even under such highly ill-posed conditions, inversion
of multiple scattering is still possible and can be used to improve
results compared to single scattering techniques.

To calculate multiple scattering, we build our model based on
the Born series expansion.13 To make it computationally effi-
cient, we take a multislice approximation by discretizing the
3-D object volume into a series of two-dimensional (2-D) thin
axial slices. At each slice, each object voxel takes a uniform
refractive index value. Between neighboring slices, the uniform
background medium is assumed. By adjusting the voxel size
and interslice distance, our model allows us to flexibly trade
computational complexity for model accuracy. At the limit
when the voxel size equals the interslice distance, our discreti-
zation reduces to the existing approaches in Refs. 14–16. Our
computational structure closely resembles the multislice model
(i.e., beam propagation method).31–33 However, our model
has the benefit of computing both forward and backward scat-
tering, whereas the latter only accounts for forward multiple
scattering.

To compute multiple scattering, we introduce a 3-D-to-3-D
operator to efficiently evaluate the internal scattered fields
within the volume. The computational framework discretizes
the 3-D object as a set of 2-D slices, and multiple scattering
is modeled as recursive propagation among them. Starting from
the initial field, each subsequent recursion estimates the next
higher-order scattering term within the object volume. This pro-
cess can be carried out up to an arbitrary order until the field
converges to a steady state. To evaluate the convergence, we
adapt a metric derived from the residual error of the internal
field.19,25 Next, we devise a 3-D-to-2-D operator that computes
the external scattered fields by propagating the multiply scat-
tered internal 3-D field to the 2-D sensor plane. Finally, the in-
tensity measured by the hologram is the interference between
the scattered and the unscattered fields. This further complicates
the model by introducing the “twin-image” problem.34 If only
single scattering is considered, our model reduces to linear com-
pressive holography.11 As a result of multiple scattering compu-
tation, the hologram encodes information about the high-angle
scattering within the volume, which is otherwise ignored in sin-
gle scattering-based methods. We show that this extra informa-
tion leads to better recovery of the scatterers, in particular at
larger depths.

To solve the inverse scattering problem, we derive an opti-
mization procedure that iteratively minimizes the data-fidelity
term measuring the difference between the estimated and mea-
sured holograms and imposes a sparsity-promoting regulariza-
tion on the object. The overall structure of the algorithm follows
the proximal-gradient method.35 The key ingredient is the gra-
dient computation of the data-fidelity term. Conveniently, our
recursive forward model leads to a similarly structured recursive
gradient computation. Further exploiting the convolution struc-
ture in the scattering operators, the algorithm is implemented
using efficient FFT-based computations.

Distinct from prior Born-series-based models,14–18 we do not
directly measure the full complex field. The effect of sparsity
regularization on the twin-image artifact has been studied using

single-scattering11,36 and 2-D multiple-scattering models.27 Here,
we show that the sparsity is also effective in suppressing twin-
image artifacts under 3-D multiple-scattering models.

An important feature of our multislice-based framework is
that the 3-D object can be flexibly estimated with any desired
number of axial slices, as set by the targeted resolution. In par-
ticular, we show that it is possible to use much fewer axial slices
to achieve high localization accuracy while still exploiting the
extra information contained in the multiple scattering. This al-
lows us to handle much larger scale problems with reduced
computational cost as compared to existing techniques that
are often limited by fine sampling requirements.

Single scattering-based methods tend to underestimate the
refractive index contrast. This underestimation can be mitigated
by incorporating multiple scattering.17,25,37,38 We show this effect
using our multislice-based approach in single-shot in-line
holography and demonstrate improved particle localization
and axial resolution under multiple scattering.

Next, we demonstrate the localization accuracy of our
method by imaging 3-D distributed particles in water at various
densities in both simulation and experiment. To facilitate quan-
titative comparison of different methods, we use a classification
framework and use the receiver operating characteristic (ROC)
curve to determine each method’s best performance. At low par-
ticle density, our multiple-scattering model converges to the sin-
gle scattering solution as expected since the information is
dominated by the first-order scattering. At high particle density,
our model largely improves the accuracy since multiple-scatter-
ing becomes more significant. We observe that the localization
accuracy is highly depth-dependent. Following the classification
framework, we use the Dice coefficient39 to quantify the locali-
zation result slice-by-slice. We show that our multiple-scattering
model provides greater improvement at larger depths.

2 Theory and Method

2.1 Forward Model

Consider the imaging geometry in Fig. 1(a). An in-line holo-
gram Im at the measurement plane can be written as

Imðx0Þ ¼ juinðx0; 0Þ þ Eðx0; 0Þj2
¼ juinj2 þ 2uinRefEg þ jEj2; (1)

where E is the scattered field on the measurement plane, uin is
the incident plane wave and is assumed to be real on the
hologram plane (z0 ¼ 0) without loss of generality, and
x0 ¼ ðx0; y0Þ represents the transverse spatial coordinates on
the hologram plane. The self-interference term of the scattered
field jEj2 is ignored; the validity of this assumption is dis-
cussed in Sec. 3.2. The scattered field and its “twin-image” con-
tribution is related to the measured hologram after background
removal by

RefEðx0; 0Þg ¼ ½Eðx0; 0Þ þ E�ðx0; 0Þ�
2

¼ Imðx0Þ − juinj2
2uin

:

(2)

The background-removed hologram thus represents the real
component of the scattered field at the measurement plane
and is given as Ibrðx0Þ ¼ ½Imðx0Þ − juinj2�∕2uin. To model the
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hologram resulting from multiple scattering up-to the K’th or-
der, we apply the framework of Born series expansion,13,16 which
gives two coupled equations:

Eðx0; 0Þ ¼
ZZZ

Ω
fðx0; z0ÞuKðx0; z0Þhðx0 − x0;−z0Þd2x0 dz0; (3)

ukðx; zÞ ¼ uinðx; zÞ

þ
ZZZ

Ω
fðx0; z0Þuk−1ðx0; z0Þhðx − x0; z − z0Þd2x0 dz0;

(4)

where h is the 3-D Green’s function and uKðx0; z0Þ is the K’th-
order multiply scattered field within the volume Ω. This

mathematical model is based on the scalar Helmholtz equation,13

and polarization effects are neglected. This internal field is com-
puted recursively within the support Ω using the Born series
[Eq. (4)]. The permittivity contrast f is related to the refractive
index by fðx0; z0Þ ¼ k2

4π ½n2ðx0; z0Þ − n2med�,13 where nmed is the in-
dex of the homogeneous background medium, and k is the wave
number in free space. For simplicity, f is assumed to be real
valued and absorption effects are ignored. We note that the spa-
tial coordinates associated with the object are within the 3-D
support, ðx; zÞ ∈ Ω, ðx0; z0Þ ∈ Ω, whereas the hologram is
measured outside the support, ðx0; z0Þ∉Ω. To compute higher
order scattering, the initial condition is u0ðx; zÞ ¼ 0, and
k ¼ 1,2;…; K indexes the scattering order. When K ¼ 1,
u1ðx; zÞ ¼ uinðx; zÞ is the incident field [from Eq. (4)], and
Eq. (3) reduces to the first Born approximation that linearly

Fig. 1 In-line holography with multiple scattering. (a) A plane-wave is incident on a 3-D object
containing distributed scatterers. The field undergoes multiple scattering within the volume and
then propagates to the image plane. A hologram is recorded, which is then used to estimate
the unknown scatterers’ distribution. (b) An inline holography setup is used that consists of a colli-
mated laser for illumination and a 4F system for magnification. (c) The raw data are a single holo-
gram. (d) The reconstruction implements a nonlinear inverse multiple scattering algorithm.40

(e) The output estimates the 3-D distribution of the scatterers.
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relates the object to the singly scattered field. When K ¼ 2, this
relation becomes nonlinear and the second-order multiple scat-
tering is taken into account via modeling of the additional in-
teraction between the object and the field within the volume. For
larger K, the approximation becomes more accurate by account-
ing for K-order multiple scattering.

Equations (3) and (4) can be discretized to get the following
recursive forward model:

E ¼ H diagðuKÞf; (5)

uk ¼ uin þG diagðuk−1Þf; (6)

for k ¼ 1,2;…; K. Here, f and uk have dimension
ðNxNyNzÞ × 1, and E is ðNxNyÞ × 1. Nx, Ny, and Nz are the
number of pixels along the x, y, and z within Ω, respectively.
Here, diagðuÞ represents a diagonal matrix with the vector u on
the main diagonal.

We consider the 3-D volume to be a set of discrete 2-D slices
along the longitudinal axis. H and G are the scattering operators
that represent propagation among the object slices and to the holo-
gram plane. H propagates the field from the object support to
the hologram plane. H ¼ KHQ0B, where B ¼ bldiagðK; ::;KÞ
is a block-diagonal matrix. K and KH are the 2-D DFT and the
inverse 2-D DFT matrices, respectively, each with dimension
ðNxNyÞ × ðNxNyÞ. Q0 ¼ ½L0−1 L0−2 … L0−Nz �, where
Lz0−z is a diagonal matrix representing the discrete transfer
function that performs propagation between two slices, from
the slice z to z0. This treatment of the H operator is similar
to that in Ref. 11. G is the multiple scattering operator that
performs propagation from the object volume to within itself
(Fig. 2). G ¼ BHRB, where R ¼ ½Q1;Q2;…;QNz

� and
Qm ¼ ½Lm−1 Lm−2 … Lm−Nz �. R has the dimension of
ðNxNyNzÞ × ðNxNyNzÞ and contains transfer functions that
propagate the field from each slice to every slice within the sup-
port. There are two methods of computing the elements in the
transfer function Lz0−z having dimensions ðNxNyÞ × ðNxNyÞ,

the direct and the angular spectrum methods.41 We use the direct
method, in which the Green’s function hðrÞ ¼ expð_ιkjrjÞ∕jrj is
sampled in the spatial domain, followed by slicewise 2-D FFT,
where r ¼ ðx; y; zÞ.

An important numerical treatment to hðrÞ is around the sin-
gularity at jrj ¼ 0. We adapt the technique from Refs. 42 and 43
and consider a spherical exclusion zone around jrj ¼ 0 of radius
a, inside which the Green’s function is assumed to take a con-
stant value. Effectively, this assigns an “averaged”Green’s func-
tion value around the singular region. Empirically, we found
that, at low refractive index, the choice of a does not signifi-
cantly affect the result, as long as the center voxel (at jrj ¼ 0)
is excluded. For a high refractive index, a highly affects the con-
vergence of the forward model. We set a to match the largest
expected radius of the particles. This means that the strong
multiple scattering inside each individual particle cannot be re-
liably modeled at high contrast; hence it is ignored. Only par-
ticle–particle interactions are modeled. Correspondingly, during
the inversion, a sets the largest particle size that can be recov-
ered by our model for high index particles.

2.2 Inverse Problem

To estimate the object f from the holographic measurement, we
need to solve Eqs. (5) and (6). Unlike traditional digital holog-
raphy, this problem is nonlinear when K > 1. We devise an in-
verse scattering algorithm44,45 that minimizes a cost function
CðfÞ to compute the estimated object f̂ as follows:

f̂ ¼ argmin
f∈F

fCðfÞg ¼ argmin
f∈F

fDðfÞ þ τkfkTVg; (7)

where DðfÞ ¼ 1
2
kIbr − RefEestgk2 is the data fidelity term in

which Ibr is the real valued measured hologram after back-
ground removal, and Eest is the complex-valued scattered field
estimate from our model [Eq. (5)]. RefEestg provides an esti-
mate for Ibr [Eq. (2)], k · k represents the L2-norm, F is the con-
vex set that constrains the object to be nonnegative, and τ is the
regularization parameter that is empirically tuned. Here, kfkTV

Fig. 2 Illustration of the 3-D internal scattered field operator G in Eq. (6). (a) Each object slice f is
first voxelwise multiplied by the lower order scattered field uk−1; it is then propagated to every other
slice within the volume. (b) This computed scattered-field usk is added to the incident-field uin to
obtain the next higher-order Born-field uk . This process is recursively applied to compute the multi-
ply scattered field within the volume.
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imposes a penalty on the total variation (TV) of the object and is
defined as

kfkTV¼Δ
XN
n¼1

k½Df �nkl2 ¼
XN
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j½Dxf�nj2 þ j½Dyf�nj2 þ j½Dzf�nj2

q
;

(8)

where D∶RN → RN×3 is the discrete gradient operator with ma-
trices Dx, Dy, and Dz denoting the finite difference operations
along x-, y-, and z-directions, respectively.

The minimization in Eq. (7) is implemented via the proximal-
gradient method,46 in which the t’th iteration is written as

f t ← proxτTV

�
f t−1 − α

∂DðfÞ
∂f

�
; (9)

where proxτTVðgÞ¼Δ argmin
f∈F

f1
2
kf − gk2 þ τkfkTVg is the proxi-

mal operator for TV minimization,47 and α is the step size
set via backtracking line search.48 The initialization is f0 ¼ 0.

Similar to the forward model, the gradient computation is
also a K-order recursion:

∂DðfÞ
∂f ¼ Re

�
diagðuKÞHHrþ

�∂uK
∂f

�
H
diagðfÞHHr

�
; (10)

�∂uk
∂f

�
H
a ¼ diagðuk−1ÞGHaþ

�∂uk−1
∂f

�
H
diagðfÞGHa; (11)

for k ¼ 1,2;…; K. Here, r ¼ RefEestg − Ibr is the residual; AH

and A represent the Hermitian and complex conjugate of
the matrix A, respectively. The recursion is initialized with
∂u0∕∂f ¼ 0. Brute-force evaluation of the gradient is highly
computationally intensive for large-scale problems, with each
vector having more than a few million elements. We devise a
computationally efficient implementation by making use of
the FFT-based structures in G and H operators. This algorithm
extends the framework in Ref. 16 from small-scale 2-D to large-
scale 3-D problems and further demonstrates reconstruction
from intensity-only as opposed to full-field measurements.

3 Results
We test our model on both simulations and experiments. In our
experiment, the inline holography setup uses a linearly polarized
HeNe laser (632.8 nm, 500:1 polarization ratio, Thorlabs
HNL210L) that is collimated for illumination [Fig. 1(b)].
A 4F system with a 20× objective lens (0.4 NA, CFI Plan
Achro) and a 200-mm tube lens is used to collect the scattered
field with the Nyquist sampling requirement satisfied. A CMOS
sensor (FLIR GS3-U3-123S6M-C) is used to capture the holo-
grams. The object consists of polystyrene microspheres with
nominal diameter 0.994� 0.021 μm (Thermofisher Scientific
4009A) suspended in deionized water. The suspension is held
in a quartz-cuvette with inner dimensions 40mm × 40mm×
0.5mm. We are interested in localizing the individually sus-
pended scatterers. A shutter speed of 5 ms was used and found
to be sufficiently fast to capture the holograms without any mo-
tion artifacts from suspended particles. The illumination beam
diameter is less than the width of the cuvette and larger than the

CMOS sensor area to avoid edge artifacts. The front focal plane
of the objective lens was set just outside the inner wall of the
cuvette for hologram recording.

Importantly, Eq. (6) requires computation of high-angle
multiply scattered field propagating within the volume; thus
the internal field needs to be sampled at the Nyquist rate λ∕2.
In our system, the camera’s pixel-size is 3.45 μm, and the ef-
fective lateral sampling size after magnification is δx ¼ δy ¼
172.5 nm. This satisfies the sampling requirement in the
medium, where the wavelength is λ ¼ 630 nm∕nwater ¼
473.7 nm. We set the voxel size along axial direction δz ¼
172.5 nm, such that the voxels are cubic. The spacing between
slices is assumed to contain uniform background medium and is
set to be 5 μm, approximately matching the system’s axial res-
olution of λ∕ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − NA2
p

Þ ¼ 5.7 μm. During the computa-
tion, 2× zero-padding is used in all FFTs to avoid boundary
artifacts. We demonstrate large-scale inverse scattering that
reconstructs 100 million voxels in a 176μm × 176μm × 500 μm
volume.

For large-scale simulation, we model the system parameters
to approximately match the physical setup. On such a scale, rig-
orous solutions such as FDTD are computationally prohibitive,
and sample complexity makes analytical solutions such as Mie
theory nontrivial. We first study the effect of multiple scattering
on simulated holograms using 3-D SEAGLE,25 which is an ac-
curate forward model that incorporates multiple scattering, in-
cluding scattering within each particle. It is based on a rigorous
optimization procedure that solves the Lippmann Schwinger
equation. We further simulate the hologram at high particle den-
sities using our model with a sufficiently high scattering order,
e.g., K ≥ 10, such that the model converges and the simulated
field closely estimates the actual. In order to validate the con-
vergence, we present an evaluation metric and show that the
model converged within the first few scattering orders for all
tested scenarios. Improvement of our method compared to sin-
gle scattering is presented quantitatively.

The Boston University Shared Computing Cluster (SCC)
was used for all computations. The average times of computing
one iteration for the single- and multiple-scattering models on a
512 × 512 × 50 grid were 58 and 257 s, respectively. All recon-
structions were run for 100 iterations. In what follows, we
present our findings.

3.1 Effect of Multiple Scattering in Small-Scale
Inversion: A Multislice-Based Approach

It has been shown that in the presence of strong multiple scat-
tering, the single-scattering models underestimate the permittiv-
ity contrast.17,25,37 Here we validate our model on a small-scale
simulation and make similar observation by showing that the
underestimation is mitigated as multiple scattering is incorpo-
rated in the inversion.

The utility of our multislice-based computational approach is
also demonstrated, in which the number of axial slices can be
arbitrarily chosen in the inverse reconstruction. Effectively, we
approximate the 3-D object with a fixed number of slices, such
that the computation is tractable when expanding to large-scale
problems.

We simulate a volume of 44 μm × 44 μm × 6.4 μm, discre-
tized as a 256 × 256 × 37 object, containing eight spheres in
water, each with refractive index n ¼ 1.43 and diameter 1 μm.
In Fig. 3(a), we depict the central 6.2 μm × 6.2 μm × 6.4 μm

Tahir, Kamilov, and Tian: Holographic particle localization under multiple scattering

Advanced Photonics 036003-5 May∕Jun 2019 • Vol. 1(3)



region of this object. The multiple scattering is significant in the
presence of occluding geometry along the optical axis, and a
refractive index contrast of δn ¼ 0.1. It is known that occlusion
causes strong axial field coupling via multiple scattering be-
tween scatterers, which is ignored by the first-order model.49

We therefore expect that incorporating multiple scattering will
improve object estimation from the hologram.

An inline hologram is simulated at 5 μm from the front slice
using the SEAGLE. The hologram is then inverted using our
multislice-based method incorporating first-, second-order scat-
tering. The scattered intensity jEj2 is included when simulating
the hologram. During the inversion, this term is ignored follow-
ing the procedure in Sec. 2. Our results indicate that even under
this approximation, our model suppresses the underestimation
artifacts by incorporating multiple scattering.

In order to test the utility of our multislice-based approach,
we perform reconstruction for two cases. In the first case,
we reconstruct all 37 slices for the object [Fig. 3(c)]. The
reconstruction based on the first-order scattering underestimates

the refractive indices. We attribute this artifact to the strong axial
coupling via multiple scattering between the occluding particles,
which is ignored by the first-order model. The underestimation
is mitigated when second-order scattering is included in the in-
verse model.

In the second case, we estimate the object using only
three slices to perform the inverse scattering reconstruction
[Fig. 3(d)]. The reconstruction in this case approximates the
3-D object comprising of three discrete slices. We observe that
our method is able to detect the eight spheres as disks at the
correct axial locations corresponding to the centers of particles.
When using only three slices in the reconstruction, the model
has a smaller number of slices to create the same effect at
the measurement plane as the 37-slice ground truth object. In
order to compensate for this, the reconstructed scattering density
can be approximated as the integrated permittivity contrast
along the optical axis while still correctly localizing the par-
ticles. In the first-order result, we observe smaller contrast and
worse axial sectioning. The second-order multiple scattering

Fig. 3 Small-scale multiple-scattering inversion. (a) An accurate 3-D forward model is used to
simulate the hologram. (b) Multislice 3-D reconstruction is performed from a single simulated mea-
surement using our method. The number of slices in the inverse reconstruction can be flexibly
chosen. (c) Full 3-D inversion is performed by reconstructing all axial slices in the original object
using our method. The multiple-scattering method outperforms the single-scattering method by
providing both more accurate permittivity contrast estimation and improved optical sectioning.
(d) Our multislice approach enables 3-D reconstruction using a much reduced number of slices
while still maintaining the benefit of incorporating multiple scattering. Reconstruction using only
three slices is compared to demonstrate the improved localization capability by our method.
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improves the contrast as well as axial sectioning, resulting in
better localization capability.

3.2 Large-Scale Inversion of Multiple-Scattering:
Simulation

Next, we demonstrate the inversion of multiple scattering from
single-shot measurement in large-scale. For this purpose, we de-
sign a simulation that involves estimating the concentration of
particles in a suspension from its inline hologram. We show that
our multiple-scattering model improves the accuracy in estimat-
ing the particle density, particularly at larger depths.

The simulated volume is 88 μm × 88 μm × 250 μm, discre-
tized on a 512 × 512 × 50 grid, in which disk-shaped scatterers
of 1 μm diameter and constant refractive index are suspended
randomly in water, in varying densities. The disk shape may
not represent actual spheres, as would be in the real application;
however, it is taken as an approximation due to stringent sam-
pling requirements for such a large volume. We consider two
values of the refractive index contrast δn ¼ 0.01 and 0.19.
For each volume, we first simulate holograms using 20’th-order
scattering, followed by the reconstruction using first- and sec-
ond-order models. The particle density is estimated for each re-
constructed volume using the ImageJ 3-D objects counter
toolbox.50 The optimal threshold parameter used for calculating
the density is determined using the ROC.

As a measure of particle density, we consider the geometric
cross-section Rg, which corresponds to the fraction of the holo-
gram area directly occluded by the scatterers, defined as

Rg ¼
total cross-sections of all scatterers

area of the hologram
≈

Npπr2

NxNyδxδy
; (12)

where Np represents the total number of scatterers in the vol-
ume. This metric is valid for scattering domains that are not very
thick, as in our case. For a collection of identical particles sus-
pended in a homogeneous medium, the geometric and scattering
cross-sections are directly related,51 in which the latter is a direct
measure of the fraction of the incident light scattered by an
object. For higher values of Rg, we thus expect greater contri-
butions of multiple scattering. From the signal processing

perspective, Rg also measures the sparsity of the problem as
it approximates the ratio between the number of nonzero un-
knowns and the number of measurements. The values of Rg

tested are 0.01, 0.02, 0.05, 0.1, 0.2, and 0.4, corresponding
to Np ¼ 100, 200, 500, 1000, 2000, and 4000, respectively.
We simulate five random object volumes for each value of
Rg and refractive index contrast and report the mean statistics
of the reconstructions.

In Sec. 2.1, we assumed that the intensity of the scattered
field jEj2 is negligible in the forward model. In this study, this
assumption holds true when Rg ≤ 0.1, where the contribution of
jEj2 is at least an order of magnitude smaller than the total in-
tensity of the hologram (Fig. 4). For higher particle density, jEj2
becomes increasingly significant, which leads to greater
model error.

For the series expansion approach used in our model, it is
important to evaluate its convergence. In Fig. 5(a), we present
the convergence properties of the forward model under our ex-
perimental conditions. While in general higher-order terms are
required for convergence under stronger scattering, the second-
order scattering is sufficient for most of the cases studied. Our
convergence metric e is defined by the residual error of the field
within the 3-D volume,19,25,30 as

e ¼ kAuK − u0k; (13)

where A ¼ I −G diagðfÞ. This convergence metric essentially
measures the self-consistency of the total internal field.25 For
K-order scattering, it computes the norm of the residual contri-
bution from (K þ 1)-order scattering, which must approach zero
in the case of convergence.

Next, we evaluate the reconstruction accuracy by measuring
the signal-to-noise ratio (SNR)

SNR ¼ 20 log10

� kf truek
kf true − f̂k

�
; (14)

where f true and f̂ are the true and estimated objects, respectively.
For higher index contrast (δn ¼ 0.19), our multiple-scattering
model performs consistently better than the single-scattering
model for all densities tested [Figs. 5(b) and 5(c)]. In general,

Fig. 4 Effect of particle density on the scattered intensity term jE j2 contribution in the hologram.
(a) Contribution is negligible compared to the hologram for low particle densities and becomes
gradually important as the particle density increases. (b) The ratio between the total intensity
of the hologram and the jE j2 terms for all values of Rg tested in the simulation. For Rg ≤ 0.1,
the total intensity of the hologram is at least an order of magnitude larger than the jE j2 term.
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the reconstruction performance from both methods drops as the
density increases. We attribute this to stronger higher-order scat-
tering and decrease in the object sparsity. The stronger scattering
introduces higher-order nonlinearity through Eq. (6), making
the problem harder to invert. The decrease in object sparsity
leads to an effective smaller measurement-to-unknown ratio fur-
ther worsening the ill-posedness of the problem.

For higher contrast (δn ¼ 0.19), at low particle density
(Rg ≤ 0.02), single and multiple scattering methods perform
similarly. This is expected since multiple scatterings are weak
due to the small scattering cross section. For 0.02 < Rg ≤ 0.1,
our method outperforms the single scattering method, providing
a better estimate of the actual particle density. For Rg > 0.1, the
SNR drops below 1 dB, and we empirically consider that the
reconstruction has failed [Fig. 5(b)].

For lower index contrast (δn ¼ 0.01), both multiple and sin-
gle scattering methods perform almost identically for all den-
sities tested, which indicates that the contribution from
multiple scattering is negligible for low refractive index contrast
[Fig. 5(c)]. 3-D renderings and cross-sectional reconstructions at
different depths are shown in Fig. 5(d).

The depth-dependent performance is highlighted in Figs. 6(a)
and 6(b). Close to the hologram plane (z ¼ 5 μm), single and
multiple scattering reconstructions are similar and match the

ground truth. At larger depth (z ¼ 190 μm), the single-scatter-
ing reconstruction degrades and results in a large number of
missing particles [Fig. 6(a)]. Our multiple-scattering model im-
proves the localization at larger depths. By treating particle
localization as a binary classification problem, we use the
ROC curve to determine the optimal segmentation threshold
when quantifying the voxels reconstructed by each method.10

This allows us to evaluate the localization accuracy slice-by-
slice, whose statistics are accumulated by five different object
volumes for each particle density. The statistic we use for com-
parison is the Dice coefficient that is used to gauge the similarity
of two samples and is defined as

D ¼ 2
P

N
i¼1 pigiP

N
i¼1 p

2
i þ

P
N
i¼1 g

2
i
; (15)

where pi and gi each represent a voxel from the predicted and
ground truth binary segmentation volumes, respectively, and i
indexes the voxels of each 3-D volume. Consistent with the vis-
ual inspection in Fig. 6(a), the Dice coefficient clearly indicates
improvement at larger depth using our multiple-scattering
model [Fig. 6(b)]. In addition, the area under each ROC pro-
vides a direct measure of the algorithm’s overall classification

Fig. 5 Validation of our multiple-scattering method on large-scale simulation. (a) Convergence
properties of the forward model are studied under varying particle densities. Higher-order scatter-
ing is generally required for convergence when the object is strongly scattering. In most cases
studied, two orders of scattered field sufficiently capture the majority of the contribution. (b) For
higher refractive index contrast (δn ¼ 0.19), multiple-scattering performs similarly to single-scat-
tering for low concentration (Rg ≤ 0.02), and better than single-scattering for 0.02 < Rg ≤ 0.1.
Reconstruction fails for very high concentration (Rg > 0.1), i.e., when the SNR drops below an
empirically chosen value of 1 dB. The error in the predicted versus the ground truth particle con-
centrations also shows a similar trend. (c) For lower contrast (δn ¼ 0.01), multiple scattering con-
tributions are negligible and both methods give similar performance. (d) A 3-D rendering depicting
localized particles is shown for δn ¼ 0.19 and Rg ¼ 0.1. Both methods have similar performance
for slices close to the image plane, but our multiple-scattering model performs better at increased
depths.
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performance. Our results indicate that the multiple-scattering
model consistently outperforms the single scattering method
[Fig. 6(c)].

3.3 Large-Scale Experimental Validation

Finally, we demonstrate our method on a set of large-scale ex-
periments. We reconstruct over 100 million object voxels
(1024 × 1024 × 100) from each 1-megapixel hologram. Our
multiple-scattering model significantly improves the 3-D locali-
zation accuracy as compared to the BPM and single-scattering
methods. Notably, our experimental results closely match the
simulation.

We prepare polystyrene microsphere suspensions, ranging
from dense to sparse concentrations via successive dilution,
with corresponding Rg values of 0.4, 0.2, 0.1, 0.05, 0.0125,
and 0.0063. Five holograms are recorded at each concentration,
and then used for reconstructions and density estimation.
Background subtraction is performed on each hologram as a
preprocessing step to remove static artifacts. The inversion is
performed using our method with second-order multiple-scatter-
ing (K ¼ 2), the single-scattering methods, and BPM.

First, we evaluate the results based on the optimization con-
vergence cost [Fig. 7(a)]. The multiple scattering method

converges to a lower value than single scattering for all den-
sities, indicating better fit to the cost function CðfÞ. The cost
increases for both methods with Rg, depicting degradation of
reconstruction with increase in particle density.

Next, we assess the estimated particle density. Our multiple-
scattering model consistently performs better than the single-
scattering model for Rg ≤ 0.1 [Fig. 7(b)]. For Rg > 0.1,
reconstruction fails for both methods as also found in our sim-
ulation. Hence, we use Rg ¼ 0.1 as an empirical performance
bound of our method for this application.

Evidently, the recorded holograms gradually resemble
speckle patterns as the particle density increases [Fig. 7(c)].
We quantify the hologram’s contrast ratio (CR) at each density,
which can be used as an alternative metric. The CR is calculated
as the ratio of the standard deviation to the mean.51 At the critical
Rg ¼ 0.1 concentration, the CR is around 0.335.

Finally, we closely examine the 3-D reconstructions for Rg ¼
0.0063 and Rg ¼ 0.1 (Fig. 8). For the low-density case, single-
and multiple-scattering methods perform similarly due to weak
multiple scattering. For the high density case where multiple
scattering becomes significant, our method outperforms the
single-scattering model. Particle localization degrades with in-
creased depth; our multiple-scattering method provides a more
uniform estimation and better localization at increased depth,

Fig. 6 Reconstruction performance as a function of depth. (a) Segmentation maps of recon-
structed slices (zoomed-in 51 μm × 51 μm regions) at different depths (true positive, white; true
negative, black; false positive, green; false negative, pink). For object slices close to the hologram,
both multiple and single scattering methods provide high accuracy. At larger depths, the accuracy
deteriorates for both methods. Our multiple-scattering method performs notably better at larger
depths for higher particle densities. (b) The slicewise Dice coefficient plotted as a function of slice
depth also indicates that the multiple-scattering model provides improved segmentation accuracy,
especially at greater depth. (c) The particle localization accuracy is quantified using the ROC
curve. The curves corresponding to the multiple-scattering solutions consistently have larger
areas underneath, indicating better localization accuracy as compared to the single-scattering
method in all cases studied.
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Fig. 7 Experimental validation of our method in large-scale. (a) The multiple-scattering model
converges to a lower cost than the single-scattering model for all concentrations indicating better
fit to the cost function. (b) The reconstructed particle density follows a trend similar to the simu-
lation where multiple-scattering performs better than the single-scattering method for Rg ≤ 0.1;
both methods fail for Rg > 0.1. (c) As Rg increases, the hologram gradually resembles speckle
patterns, as quantified by the CR.

Fig. 8 A 3-D visualization of the localized particles under different concentrations from our experi-
ment and their 200 × 200 lateral cross sections at different depths. For low density, both multiple-
and single-scattering methods perform similarly. For high density, the underestimation of particles
from the single-scattering method is clearly visible, especially at increased depth. Our multiple-
scattering model mitigates the underestimation as it accounts for the intercoupling between par-
ticles whose strength increases as the depth. The traditional BPM is effective for low density but
completely fails for high density and the reconstruction resembles speckles throughout the
volume.
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matching our observations in the simulation. While BPM is able
to reconstruct individual particles at the low density, it com-
pletely fails for high density and resembles speckles extended
across the object volume.

4 Conclusion
We have presented a new computational framework for utilizing
multiple scattering in in-line holography for large-scale 3-D par-
ticle localization. Our model recursively computes both forward
and backward multiple scattering in a computationally efficient
manner. Both simulations and experiments demonstrate the sig-
nificance of modeling multiple scattering in alleviating depth-
dependent artifacts and improving the 3-D localization accuracy
compared to traditional methods. Our method may open up
new opportunities for large-scale imaging applications utilizing
multiple scattering.

Our model is currently limited by the convergence regime of
the classical Born series expansion, preventing its application to
particle density higher than 0.1 geometric cross-section. Recent
work on convergent Born series expansion52 provides a prom-
ising avenue to extend our model to higher scattering scenarios.

The multislice structure proposed in our model provides a
flexible framework for trading computational cost for model ac-
curacy. Still, higher-order scattering calculation necessitates
longer computational times, which is less appealing for appli-
cations requiring real-time reconstructions. To facilitate rapid
volumetric estimation without sacrificing accuracy, recent ma-
chine learning-based inverse scattering approaches53–55 may be
explored in the future.
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